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Abstract: The classification of Finsler spaces of constant curvature is an inter-
esting and important topic of research in differential geometry. In this paper we
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constant flag curvature.
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1. Introduction

Finsler metrics are generalization of Riemannian metrics in the sense that they
depend on both the position and direction while its counterpart depend only on
position. Generalized Kropina metric belongs to the large class of («, §)-metrics.
(cv, B)-metrics were firstly introduced by Matsumoto [8]. They are constructed by
Riemannian metric @ = y/a;;(x)y’y’ and the differential 1-form 8 = b;(z)y’. Some
remarkable (o, §)-metrices are: Randers metric: F = o + ; Kropina metric: F =

QT;; generalized Kropina metric: F = a;: (m # -1, 0, 1); Matsumoto metric : F
= aa_jﬁ and square metric: F = @ Contrary to other («, )-metrics, Kropina
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metric and generelised Kropina metric are not regular but they have wide applica-
tions in many branches of science.

Classification of (a, 8)-metrics is very important problem in Finsler geometry. Sev-
eral geometers have worked on this topic with different perspective ([2], [7], [9],
[13]). The flag curvature is the most significant Riemannian quantity in Finsler ge-
ometry because it correlate sectional curvature in Riemannian geometry. The aim
of this paper is to find if and only if condition for generalized Kropina space to be
of constant flag curvature. Furthermore, Finsler metrics of constant flag curvature
are the natural extension of Riemannian metrics of constant sectional curvature.

2. The Description of Generalized Kropina Metric

Let (M, «) be an n(> 2)-dimensional smooth manifold endowed with Rieman-
m+1

nian metric a. A generalized Kropina space <M , 5—’”) is a Finsler space whose

am+1

g (m#-1,0,1), where a = \/a;;(x)y'y/
is a Riemannian metric and 3 = b;(z)y" is a differential 1-form. For our purpose
we assume that the matrix (a;;) is positive definite.

It is to be noted that Randers spaces (M, F = a + ) on TM are Lagragian
duals of Kropina spaces (M = F = C_”—2) on T*M and vice-versa in the case b* = 1,
where b is the Riemannian length of 5.

Furthermore, for regular Lagrangians, the necessary and sufficient condition for
a Finsler space to be of constant flag curvature K is that its dual space is also of
constant flag curvature K ([4], [5]). Importance of generalized Kropina metrics can
be also seen in dual related problems, L-dual for generalized Kropina spaces and
some other Finsler spaces have been obtained in ([10], [11], [12]).

Define a new Reimannian metric h = (/h;;(x)y'y/ and a vector field W =

(%) on M by [3

fundamental function is given by F =

1
hij = ek(x)am W; = §€k(x)bi> @2 = 4. (2.1)

where Wl = hijo.
Then the generalized Kropina metric can be written as

m—+1
aerl h 2
F = = 70 2.2
Bm ™ Hfan ’ ( )

(m=1)k(z)

__ e
where m = S

via equation (2.2).

. Riemannian metrics h and « are connected with each other
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3. The Coefficients of the Geodesic Spray
Let us recall [15], the following theorem for later use:

Theorem 3.1. Let (M, g) and (M, g* = e’g), where g = \/gi;(z)y'y? and
g = ,/gfj(x)yiyj respectively, be two n-dimensional Riemannian spaces which are

conformal to each other. Furthermore, let ’yjik and ’yj*ik be the coefficients of Levi-
Civita connection of (M, g) and (M, g*), respectively. Then, we have

*

9 = €%gij, 9" = e g? (3:1)
and
’yj*ik = ’7jik + 0 + Pk‘s; — 0’ 9j, (3.2)

where p; = 22 p' = giip;.

From (2.1), we have h;; = e*a;;. Applying Theorem 3.1, we get
NS R S I A
h’)/j E— Vik + §k](5k: + §kk(5] - §k Ajk, (33)

where v’ . and  “y;", are the coefficients of levi-Civita connection of (M, h) and
(M, «) respectively, k; = 0k/0z" and k' = a"k;. Transvecting (3.1) by y/y*, we
get

) . . 1 .
" Y60 = Yoo + Koy’ — Ehooklj (3.4)

where k' = h¥[; and the index 0 means the transvection by y'.
We denote the covariant derivative in the Riemannian space (M, «) by (;i) and
introduce the following notations: s;; := b”;bj”', i = %, s = b's;;.
In [1], authors have shown that the coefficients G* of geodesic spray in a Finsler
space (M, F = a¢(s)), where s = f/a and ¢ is a differential function of s alone,

are given by

7 !

2GE = ’V(i)o + 2wash + 20 (rgp — 2awsy) <y_ + w bi), (3.5)

a w — sw

¢’ ._ —sw’
p—s¢’? and © := 2{1+sww+(zgj—52)w’}'
. . m—+1 . . . —
For a Generalized Kropina space (M , O‘Bm ), anew Riemannian metric h = \/h;;y'y?

and a vector field W = W'(9/0x") are defined by (2.1).

where w =
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So, using (2.1), we can say that the vector field W satisfies the condition ||W|| = 1.
For the generalized Kropina metric, we have

1
(b(S) '_S_m7
m 1 m «
Wi=m———= ——
14+ms 14+mpB
,om 1
14+ ms?
ms
O :=—
s2 — ms? + mb?’
, AW
s
ek@) hyg
Furher, we have
Wi
0= dadl . (3.6)
2{(1 — m)Wo -+ mhoo}
Therefore, we get
2G" =" 4l + 207, (3.7)
where
. A . : W'
20 1 = —koy' + —hook' + 2was'y + 20(re0 — 2awso)(y— + bl) (3.8)
2 o  w—sw
Remark. We can introduce a Finsler connection I'* = ("~} i (), N7 h%ik(x) v,

C: ) associated with the linear connection *+? () of the Rlemanman space (M, h).
The h-covariant derivative are defined as follows [6]:
For a vector field W(z) on M,

(1) WZ(x)HJ = % B 8WZNS + IYJSWS - (9:137 + ’YJSWS
For a referer_lce vector y ,
(2) yj; = 55 — SEN; + M)y = =N/ + N/ = 0.
We put
Wi + Wi Wiy = Wi : : : :
Rij = M Sij = M le = herj, Slj = hWST-j,

2 ’ 2 ’
Sj = bjsjiRi = WTR”', SZ = WTSTZ‘, RZ = hiTRT, Sz = hiTST.
kW, — kW,

VAR
—

1 _
It follows iy = 26_k (RU — §erThij), Sij = 2€_k (SZJ +
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Furthermore, we get

—252 —|—le —le
80:250+kWO—]€0W,
S; = 26_k(252 + WT];?TVVZ' - k1)7
Sp — 26_k(250 + WT%TWO — k‘o),
1 _
roo = 2e " (Roo — —errhoo)y
: 2W,
bl = a"b, = Pt —= i = 2.
Using all these, we get

(m — 1){mh00 + (m + 1)W02}

]{7 yz ( ) hOOkl

20" =
(m + D{(1 = m)Wo> + mhoo} = 2(m+1)
m(m — 1)h00WO i ( - 1)erzirh00
2 koW" — 2
; 2m hoo m
2Woy' — hooW') — —— —5% —
( oy 0 ) m+ 1 W() (1 — m)W02 + mhoo
2m h
(Roo + —ﬂso)(zwoy — hooW). (3.9)
+ 1 Wy
Remark. Putting m = 1 in above equation, we have
A , . 2W,
2@1 00 (S()WZ SZ[)) —+ (RQOWZ — QSoy ) — —ORQOy
W hoo

The above equation coincides with (2.6) in [14].
Using (3.9), we can obtain

m+3 . m+1 . m—1
2(I)ZhO() WO _AZ hOO +AZ(2)h002 I/Vom_‘_Az?))I/I/v()m—i_QhO()2 )
or

20 hooW5" = Afyyhio + AlgyhooW5" + Al W52, (3.10)
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where
Aél) :Uo{m(m — 1)W0E’T — 2m250Wi}W0m_1,
(m—1) i m(m — 1)agkoW*

_ -1 7.7 0
20m 1) e aom(m — HWoW,.k"y

AZ@ =oom(m — 1) —

2m . . )
-5 1) RypoW"' — 4 250y
(m+ O, + m(m + 1) Roo aom”Soy
: 2m(m + 1) :
Al =oo{(m* —1) — TOROOZU h

1
(m +1){(1 —m) " 4 m}

and o0p =

4. The Necessary and Sufficient Conditions for Constant Curvature of
Generalized Kropina Spaces

In this section, we consider a Generalized Kropina space (M, a™™!/38™) of
constant curvature K, where o = y/a;;4'y’ is a Riemannian metric and 8 = b;(x)y"*
is a differentiable 1-form. Furthermore, we suppose that the matrix (a;;) is always

positive definite and that the dimension n > 2. Hence, it follows that a™*! is not
m+1

divisible by ™. This is an important relation and it is equivalent to that hy?
is not divisible by W". Using these, we shall obtain the necessary and sufficient
conditions for a Kropina space to be of constant curvature.

4.1. The Curvature Tensor of a Generalized Kropina Space
Let R;",, be the h-curvature tensors of Cartan connection in Finsler space. The
Berwald spray curvature tensor is
, oG
b i J
( )Rj KT A(kl)< Ol
where the symbol A denotes the in_terchangepf indices k and 1 and subtraction.
It is well known that the equality Ry’ =® Ry’ holds good [15]. _
From 2G" ="~y 4 2®°, it follows G =" 7'; + ®,",, where ®} := % and

k + GjrkGril>v (41)

Pl = %. Substituting the above equalities in (4.1), we get
(b)RjZkl =" Rj'y + A(kl){q)jzkuz + 9,7, 00}
The following results are well known [14]:

Proposition 4.1. The necessary and sufficient condition for a Finsler space (M,
F) to be of scalar curvature K is that the equality

Ro'o = KF2(5] —1'l)), (4.2)
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where I' = y'/F and l; = OF /0y, holds.

If the equality (4.2) holds and K is constant, then the Finsler space is said to
be of constant curvature K.
For a generalized Kropina space of constant curvature K, since F = eh;}il /(2Wy)™,

m—1

where £ = ()" we have

L Woho —mhoo Wy 4
Wohoo ’

i, =

So,
5 — lily = &) — kool i

Using the curvature obtained above, we have Ry’ =" Roiol+2<1>ﬁl —@fno—i—QCI)T’(I),.il —

DI P

Substituting the above equalities in (4.2), we get

e2pptt , ' ' ‘
K(QWO)Qm h' =" Ro'op + 29}, — Py + 207P," — 9 P;. (4.3)

4.2. Rewriting the equation (4.3) using hgy and W)

(1). The calculation for ®°,.
First, applying the h-covariant derivative |; to (3.12), it follows:

2hoo W5 @, + 2hoomWo™  Wou®' = hio Afyy + hoornWo™ ™ Wop Afgy+
(hoo)Wo" Atgyu + W Ayt
(m + 2)W5"  WoAl),

again using (3.12), we have

2hoo Wi 1l = higWo Ay, — mhiyWo Al + hOOWS”HAfQ)W
+ W3 Ay 4 2W5 2 Wy Al

By appropriate substitutions, we get

2h00W<JTn+1(I)T|l = thWOB(iI)Hl + mh?)OB(in)l + h00W5n+lez2)z
+ Wg”?’Bg?,)l + 2W0m+2334)l, (4.4)
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where

Blyyj =Alwj
Blory = = Wop A,
BZ221 —A 2)l0>

By, —A<3>||Zv

Blyy, =WouAfy)-

(2). The calculation for ®!.
Secondly, differentiating equation (3.10) by ', we get

2P h002 Wm+1 — hm+2WOCgo)l m+20(11 + hoo W 02(12
(hoo) m+1 WOC(ZQ]_)I + hOOW() 2m+1 0(22)1 + WO h000(3)1+

W™ Clyy, (4.5)
where
Ci :Az N
C(12)l = Al 2)0

0(21 ;= (m+ 1)h01A
0222)1 = AZ 3)D»

Clay = mWiA

Clay = —(m + DhaAf,

(3). The Calculation for ®j;.
Applying the h-covariant derivative |y to (4.5), we get

2hoo Wgn (I);no =hgs W5 DZ +h88+2W0D221 +
hgé+2D(31 + hoo W5n+2D(22)
+ g Wi Digay + g WoDiany,
+ h00W2m+2D133 4 h00W2m+1DE42)1+
W™ 2 Dis), + WE™ Digy, (4.6)



Constant Curvature Conditions for Generalized Kropina Spaces 131

where

Df1)z = C(io)l”o,

Dém)z = C(in)zuo - WO\\OCéO)z

Dé31)l = _2W0||OC(Z.11)M

D%22)l = Ciw )I||0s DE32 1= C(im )I||09

D(41)z = _WOHOC 21)» 33)1 = CZ22)Z\|0’

D(42)z = WOHOC(QQ)Z + C(B)ZHO’ D(ﬁ)z = C'Z'4)l||o> DEG)Z = WOIIOC(i4)z-

(4). The Calculation for ®7®?
4@7“@1 <h00>m+3w2m+2
(h00)2m+4W0 Elm)l (h00)2m+4WOEi11)1 (h00)2m+4E€21)l+

hoo) 2 W()m+2EZ12)1 (hoo) 2 WgnHEm (hOO) " 3W0E(31)
hoo)m+3W2m+2E&3)z + (hoo) ™ WS Efggy + (hoo)™ P WE™ Elyyy,

3m+7 3m+7

hOO) W(;lm+2E 431 (hOO) W(;lm+2Ez43)l (hoo)m—H W02m+3E(i52)

(

(

(oo o )W3m+2EE33)z (hoo) ™ PPWE™ 2 Bl ), + (hoo)™ WG Elsyy,

(

(hoo)*Wo™ Elgry, + (hoo) Wy ™2 Efgay + (hoo)Wo ™ Elpy + Wo™ 2 Elgy, (4.7)

+ + + + +

where

Eéo)l = Cé 0)r C(TO)Za Eéll)l = Cill)rC{O)l + CgO)rC(Tll)l» Efm)l = O(iu)rC(H)Za

EE12)1 = CE 0)r C (12)1 +Cf (12)r O ()l

Efzz)l = C(IQ)TC(H)I + C(ll)rC(12)l + Cim Cloy + C 1 Clatys

EZSl)l = Cémycrn + Cin +Clatys (23 n= 0(12 Cliay + € 22)7"0(0)1 + 0(0)r0(22
EE32)Z = (Y 21)rC(12 +C (12)rClay + 0(3)7’0(0 + 0(22 Cliy + C{ (11)rClazn + C ey
EE41)I = CE 3 Cly + C(n Clgy + 021 Clorys E(33 1= C(z2 Cliay + 12)TC(22
Eé42)l = C(' 4yr C nt C C (12)1 + 0(22 021 + O 21)rC 22)1 T C (12) C(3 + C 0(4)17
EZSl)l = Cé3)rc(21)l + 0(21) Clgy + C ywCly + € 11)7‘0(4 b E(43 1= 0(22 Claays

E€52)l = Cf 4)r C”“12)1 + 0512 C + C 022 + 022)7’0 (3)1»

Efm)l = C( 3 Clay + C C21)z + C(21 Clays EEGZ)Z = C'(114) Cloay + 022 ~Clays

E(im = C( 2rClay + C nen Z,EE 8y = C(l4)TC'(T4)l.
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(5). The Calculation for ®®,",

Differentiating (4.5) by y", we get
4hm+3w2m+2q)rq> i h2m+4WOJ Gy + h2m+4J'21)l_|_
hag W +2J12)l h2m+3W +1J (22)1 T ha' BVVOJ(Z:n)ﬂL
h36n+3w2m+2j23 + hoo W2m+1J'32 +

3m+

h6n+3W(;n+1 J (41)1 + hOO W§m+2 J 33)l hm—’_2VV02m+2 J(i42)l

+ hm—i—?w +2J51 =+ hm+1W m+2J43 4 hOO W m 2J(Z'52)l+
h002 W2m+2J61)[ 4 h00W3m+2J W4m+2J (48)

(6). The main relation
Multiplying equation (4.3) by hgs > WE™ 2 we have the equality

22mKh2m+4W6n+1hi — 22m+2h2m+2W2m+2_|_
hR i 22m+1h2m+lwm+1 22mwm+1q)”l _ 22mh6%+1W0-22mhggLW02qu)§||o+

2m—+3 1, 2m+42 2m—+2 fr 7

where h?; = §% — ['l;. Putting the values of (I)ﬁv <I>}HO, orP, ", d", P, in the above
equality, by straight forward computation, we ﬁnally obtain

h2m+2’Yl (2m+3)l e hoo 72 (2m+7)1 e W2m+ (2m+7)l =0, (4-9>

where 7’ (2m +3)l,’}/2 (2m+7y and 73 (2m47) are homogeneous polynomials of degree
2m+3, 2m+7 and 2m+7 in y’ respectlvely Here, 7" gmysy = 0 is called the
curvature part, 72’47, = 0 is called the vanishing part and V3 @m+7y = 0 the
killing part, respectively.
Proposition 4.2. The necessary and sufficient condition for a Kropina space (M,
F) with F = ;H =€ k(m;)mm_/: o

to be of constant curvature K is that (4.9) holds good.
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