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1. Introduction
Finsler metrics are generalization of Riemannian metrics in the sense that they

depend on both the position and direction while its counterpart depend only on
position. Generalized Kropina metric belongs to the large class of (α, β)-metrics.
(α, β)-metrics were firstly introduced by Matsumoto [8]. They are constructed by
Riemannian metric α =

√
aij(x)yiyj and the differential 1-form β = bi(x)yi. Some

remarkable (α, β)-metrices are: Randers metric: F = α + β; Kropina metric: F =
α2

β
; generalized Kropina metric: F = αm+1

βm (m 6= -1, 0, 1); Matsumoto metric : F

= α2

α−β and square metric: F = (α+β)2

α
. Contrary to other (α, β)-metrics, Kropina
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metric and generelised Kropina metric are not regular but they have wide applica-
tions in many branches of science.
Classification of (α, β)-metrics is very important problem in Finsler geometry. Sev-
eral geometers have worked on this topic with different perspective ([2], [7], [9],
[13]). The flag curvature is the most significant Riemannian quantity in Finsler ge-
ometry because it correlate sectional curvature in Riemannian geometry. The aim
of this paper is to find if and only if condition for generalized Kropina space to be
of constant flag curvature. Furthermore, Finsler metrics of constant flag curvature
are the natural extension of Riemannian metrics of constant sectional curvature.

2. The Description of Generalized Kropina Metric
Let (M, α) be an n(≥ 2)-dimensional smooth manifold endowed with Rieman-

nian metric α. A generalized Kropina space
(
M,

αm+1

βm

)
is a Finsler space whose

fundamental function is given by F = αm+1

βm ( m 6= -1, 0,1), where α =
√
aij(x)yiyj

is a Riemannian metric and β = bi(x)yi is a differential 1-form. For our purpose
we assume that the matrix (aij) is positive definite.

It is to be noted that Randers spaces (M, F = α + β) on TM are Lagragian
duals of Kropina spaces (M = F̄ = ᾱ2

β
) on T ∗M and vice-versa in the case b2 = 1,

where b is the Riemannian length of β.
Furthermore, for regular Lagrangians, the necessary and sufficient condition for

a Finsler space to be of constant flag curvature K is that its dual space is also of
constant flag curvature K̄ ([4], [5]). Importance of generalized Kropina metrics can
be also seen in dual related problems, L-dual for generalized Kropina spaces and
some other Finsler spaces have been obtained in ([10], [11], [12]).

Define a new Reimannian metric h =
√
hij(x)yiyj and a vector field W =

W i( ∂
∂xi

) on M by [3]

hij = ek(x)aij,Wi =
1

2
ek(x)bi, e

k(x)b2 = 4. (2.1)

where Wi = hijW
j.

Then the generalized Kropina metric can be written as

F =
αm+1

βm
= π

h
m+1

2
00

Wm
0

, (2.2)

where π = e
(m−1)k(x)

2

2m
. Riemannian metrics h and α are connected with each other

via equation (2.2).
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3. The Coefficients of the Geodesic Spray
Let us recall [15], the following theorem for later use:

Theorem 3.1. Let (M, g) and (M, g∗ = eρg), where g =
√
gij(x)yiyj and

g∗ =
√
g∗ij(x)yiyj respectively, be two n-dimensional Riemannian spaces which are

conformal to each other. Furthermore, let γj
i
k and γj

∗i
k be the coefficients of Levi-

Civita connection of (M, g) and (M, g∗), respectively. Then, we have

g∗ij = e2ρgij, g
∗ij = e−2ρgij (3.1)

and

γj
∗i
k = γj

i
k + ρjδ

i
k + ρkδ

i
j − ρigjk, (3.2)

where ρi = ∂ρ
∂xi

ρi = gijρj.
From (2.1), we have hij = ekaij. Applying Theorem 3.1, we get

hγj
i
k =α γj

i
k +

1

2
kjδ

i
k +

1

2
kkδ

i
j −

1

2
kiajk, (3.3)

where hγj
i
k and αγj

i
k are the coefficients of levi-Civita connection of (M, h) and

(M, α) respectively, ki = ∂k/∂xi and ki = aijkj. Transvecting (3.1) by yjyk, we
get

hγi00 =α γi00 + k0y
i − 1

2
h00k̄

i, (3.4)

where k̄i = hijkj and the index 0 means the transvection by yi.
We denote the covariant derivative in the Riemannian space (M, α) by (;i) and

introduce the following notations: sij :=
bi;j−bj;i

2
, rij =

bi;j+bj;i
2

, sj := bisij.
In [1], authors have shown that the coefficients Gi of geodesic spray in a Finsler

space (M, F = αφ(s)), where s = β/α and φ is a differential function of s alone,
are given by

2Gi =α γi00 + 2ωαsi0 + 2Θ(r00 − 2αωs0)
(yi
α

+
ω′

ω − sω′
bi
)
, (3.5)

where ω := φ′

φ−sφ′ , and Θ := ω−sω′
2{1+sω+(b2−s2)ω′} .

For a Generalized Kropina space
(
M, α

m+1

βm

)
, a new Riemannian metric h =

√
hijyiyj

and a vector field W = W i(∂/∂xi) are defined by (2.1).
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So, using (2.1), we can say that the vector field W satisfies the condition ‖W‖ = 1.
For the generalized Kropina metric, we have

φ(s) :=
1

sm
,

ω :=− m

1 +m

1

s
= − m

1 +m

α

β
,

ω′ :=
m

1 +m

1

s2
,

Θ :=− ms

s2 −ms2 +mb2
,

s2 :=
4W0

2

ek(x)h00

.

Furher, we have

Θ := − mW0

2{(1−m)W0
2 +mh00}

. (3.6)

Therefore, we get

2Gi =h γi00 + 2Φi, (3.7)

where

2Φi : = −k0y
i +

1

2
h00k̄

i + 2ωαsi0 + 2Θ(r00 − 2αωs0)(
yi

α
+

ω′

ω − sω′
bi). (3.8)

Remark. We can introduce a Finsler connection Γ∗ = (hγijk(x), N i
j : = hγijk(x) yk,

Ci
jk

) associated with the linear connection hγijk(x) of the Riemannian space (M, h).
The h-covariant derivative are defined as follows [6]:
For a vector field W i(x) on M,

(1) W i(x)‖j = ∂W i

∂xj
− ∂W i

∂ys
N s
j + hγijsW

s = ∂W i

∂xj
+ hγijsW

s.

For a reference vector yi,
(2) yi‖j = ∂yi

∂xj
− ∂yi

∂ys
N s
j + hγijsy

s = −N j
i +N j

i = 0.
We put

Rij :=
Wi‖j +Wj‖i

2
, Sij :=

Wi‖j −Wj‖i

2
, Ri

j := hirRrj, Sij = hirSrj,

sj := bjs
j
iRi := W rRri, Si := W rSri, Ri := hirRr, Si := hirSr.

It follows rij = 2e−k
(
Rij −

1

2
Wrk̄

rhij
)
, sij = 2e−k

(
Sij +

kiWj − kjWi

2

)
.
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Furthermore, we get

sij = 2Sij + k̄iWj − kjW i,

si0 = 2Si0 + k̄iW0 − k0W
i,

si = 2e−k(2Si +Wrk̄
rWi − ki),

s0 = 2e−k(2S0 +Wrk̄
rW0 − k0),

r00 = 2e−k
(
R00 −

1

2
Wrk̄

rh00

)
,

bi = airbr = ekhir
2Wr

ek
= 2W i.

Using all these, we get

2Φi =
(m− 1){mh00 + (m+ 1)W0

2}
(m+ 1){(1−m)W0

2 +mh00}
k0y

i − (m− 1)

2(m+ 1)
h00k̄

i−

m(m− 1)h00W0

(m+ 1){(1−m)W0
2 +mh00}

k0W
i − m(m− 1)Wrk̄

rh00

2(m+ 1){(1−m)W0
2 +mh00}

(2W0y
i − h00W

i)− 2m

m+ 1

h00

W0

Si0 −
m

(1−m)W0
2 +mh00

(R00 +
2m

m+ 1

h00

W0

S0)(2W0y
i − h00W

i). (3.9)

Remark. Putting m = 1 in above equation, we have

2Φi =
h00

W0

(S0W
i − Si0) + (R00W

i − 2S0y
i)− 2W0

h00

R00y
i.

The above equation coincides with (2.6) in [14].

Using (3.9), we can obtain

2Φih
m+1

2
00 Wm

0 = Ai(1)h
m+3

2
00 + Ai(2)h

m+1
2

00 Wm
0 + Ai(3)W

m+2
0 h

m−1
2

00 ,

or

2Φih00W
m
0 = Ai(1)h

2
00 + Ai(2)h00W

m
0 + Ai(3)W

m+2
0 , (3.10)
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where

Ai(1) =σ0{m(m− 1)W0k̄
r − 2m2S0W

i}W0
m−1,

Ai(2) =σ0m(m− 1)− (m− 1)

2(m+ 1)
k̄i − m(m− 1)σ0k0W

i

W0

− σ0m(m− 1)W0Wrk̄
ryi

− 2m

(m+ 1)W0

Si0 +m(m+ 1)R00W
i − 4σ0m

2S0y
i,

Ai(3) =σ0{(m2 − 1)− 2m(m+ 1)

W0

R00y
i},

and σ0 =
1

(m+ 1){(1−m)
W 2

0

h00
+m}

.

4. The Necessary and Sufficient Conditions for Constant Curvature of
Generalized Kropina Spaces

In this section, we consider a Generalized Kropina space (M, αm+1/βm) of
constant curvature K, where α =

√
aijyiyj is a Riemannian metric and β = bi(x)yi

is a differentiable 1-form. Furthermore, we suppose that the matrix (aij) is always
positive definite and that the dimension n ≥ 2. Hence, it follows that αm+1 is not

divisible by βm. This is an important relation and it is equivalent to that h
m+1

2
00

is not divisible by Wm
0 . Using these, we shall obtain the necessary and sufficient

conditions for a Kropina space to be of constant curvature.

4.1. The Curvature Tensor of a Generalized Kropina Space
Let Rj

i
kl be the h-curvature tensors of Cartan connection in Finsler space. The

Berwald spray curvature tensor is

(b)Rj
i
kl = A(kl)

(∂Gj
i
k

∂xl
+Gj

r
kGr

i
l

)
, (4.1)

where the symbol A(kl) denotes the interchange of indices k and l and subtraction.
It is well known that the equality R0

i
kl =(b) R0

i
kl holds good [15].

From 2Gi =hγ0
i
0 + 2Φi, it follows Gi

j =h γ0
i
j + Φj

i
k, where Φi

j := ∂Φi

∂yj
and

Φi
jk :=

∂Φi
j

∂yk
. Substituting the above equalities in (4.1), we get

(b)Rj
i
kl =h Rj

i
kl + A(kl){Φj

i
k‖l + Φj

r
kΦr

i
l}.

The following results are well known [14]:

Proposition 4.1. The necessary and sufficient condition for a Finsler space (M,
F) to be of scalar curvature K is that the equality

R0
i
0l = KF 2(δil − lill), (4.2)
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where li = yi/F and ll = ∂F/∂yl, holds.

If the equality (4.2) holds and K is constant, then the Finsler space is said to
be of constant curvature K.

For a generalized Kropina space of constant curvature K, since F = εh
m+1

2
00 /(2W0)m,

where ε = (ek(x))
m−1

2 , we have

lill =
m+1

2
W0h0l−mh00Wl

W0h00
yi.

So,

δil − lill = δil −
m+1

2
W0h0l−mh00Wl

W0h00
yi.

Using the curvature obtained above, we have R0
i
0l =h R0

i
0l+2Φi

‖l−Φi
l‖0+2ΦrΦr

i
l−

Φr
lΦ

i
r.

Substituting the above equalities in (4.2), we get

K
ε2hm+1

00

(2W0)2m
hil =h R0

i
0l + 2Φi

‖l − Φi
l‖0 + 2ΦrΦr

i
l − Φr

lΦ
i
r. (4.3)

4.2. Rewriting the equation (4.3) using h00 and W0

(1). The calculation for Φi
‖l.

First, applying the h-covariant derivative ‖l to (3.12), it follows:

2h00W
m
0 Φi

‖l + 2h00mW0
m−1W0‖lΦ

i = h2
00A

i
(1)‖l + h00mW0

m−1W0‖lA
i
(2)+

(h00)Wm
0 A

i
(2)‖l +Wm+2

0 Ai(3)‖l+

(m+ 2)Wm+1
0 W0‖lA

i
(3),

again using (3.12), we have

2h00W
m+1
0 Φi

‖l = h2
00W0A

i
(1)‖l −mh2

00W0‖lA
i
(1) + h00W

m+1
0 Ai(2)‖l

+Wm+3
0 Ai(3)‖l + 2Wm+2

0 W0‖lA
i
(3).

By appropriate substitutions, we get

2h00W
m+1
0 Φi

‖l = h2
00W0B

i
(1)‖l +mh2

00B
i
(21)l + h00W

m+1
0 Bi

(22)l

+Wm+3
0 Bi

(3)l + 2Wm+2
0 Bi

(4)l, (4.4)
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where

Bi
(1)‖l =Ai(1)‖l,

Bi
(21)l =−W0‖lA

i
(1),

Bi
(22)l =Ai(2)‖l,

Bi
(3)l =Ai(3)‖l,

Bi
(4)l =W0‖lA

i
(3).

(2). The calculation for Φi
l.

Secondly, differentiating equation (3.10) by yl, we get

2Φi
lh

m+3
2

00 Wm+1
0 = hm+2

00 W0C
i
(0)l + hm+2

00 Ci
(11)l + h

m+3
2

00 Wm+1
0 Ci(12)l+

(h00)m+1W0C
i
(21)l + h00W

2m+1
0 Ci

(22)l +W 2m
0 h00C

i
(3)l+

W 2m+1
0 Ci

(4)l, (4.5)

where

Ci
(0)l = Ai(1)l,

Ci
(11)l = −mWlA

i
(1),

Ci
(12)l = Ai(2)l,

Ci
(21)l = (m+ 1)h0lA

i
(1),

Ci
(22)l = Ai(3)l,

Ci
(3)l = mWlA

i
(3),

Ci
(4)l = −(m+ 1)h0lA

i
(3).

(3). The Calculation for Φi
l‖0.

Applying the h-covariant derivative ‖0 to (4.5), we get

2h
m+3

2
00 Wm+2

0 Φi
l‖0 =hm+2

00 W 2
0D

i
(1)l + hm+2

00 W0D
i
(21)l+

hm+2
00 Di

(31)l + h
m+3

2
00 Wm+2

0 Di
(22)l

+ hm+1
00 W 2

0D
i
(32)l + hm+1

00 W0D
i
(41)l

+ h00W
2m+2
0 Di

(33)l + h00W
2m+1
0 Di

(42)l+

W 2m+2
0 Di

(5)l +W 2m+1
0 Di

(6)l, (4.6)
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where

Di
(1)l = Ci

(0)l‖0,

Di
(21)l = Ci

(11)l‖0 −W0‖0C
i
(0)l,

Di
(31)l = −2W0‖0C

i
(11)l,

Di
(22)l = Ci

(12)l‖0, D
i
(32)l = Ci

(21)l‖0,

Di
(41)l = −W0‖0C

i
(21), D

i
(33)l = Ci

(22)l‖0,

Di
(42)l = W0‖0C

i
(22)l + Ci

(3)l‖0, D
i
(5)l = Ci

(4)l‖0, D
i
(6)l = W0‖0C

i
(4)l.

(4). The Calculation for Φr
lΦ

i
r

4Φr
lΦ

i
r(h00)m+3W 2m+2

0

= (h00)2m+4W 2
0E

i
(01)l + (h00)2m+4W0E

i
(11)l + (h00)2m+4Ei

(21)l+

+ (h00)
3m+7

2 Wm+2
0 Ei

(12)l + (h00)
3m+7

2 Wm+1
0 Ei

(22)l + (h00)2m+3W0E
i
(31)l

+ (h00)m+3W 2m+2
0 Ei

(23)l + (h00)m+3W 2m+1
0 Ei

(32)l + (h00)m+3W 2m
0 Ei

(41)l

+ (h
m+5

2
00 )W 3m+2

0 Ei
(33)l + (h00)m+2W 2m+2

0 Ei
(42)l + (h00)m+2W 2m+1

0 Ei
(51)l

+ (h00)2W 4m+2
0 Ei

(43)l + (h00)2W 4m+2
0 Ei

(43)l + (h00)m+1W 2m+3
0 Ei

(52)l

+ (h00)2W 4m
0 Ei

(61)l + (h00)W 4m+2
0 Ei

(62)l + (h00)W 4m+1
0 Ei

(7)l +W 4m+2
0 Ei

(8)l, (4.7)

where

Ei
(0)l = Ci

(0)rC
r
(0)l, E

i
(11)l = Ci

(11)rC
r
(0)l + Ci

(0)rC
r
(11)l, E

i
(21)l = Ci

(11)rC
r
(11)l,

Ei
(12)l = Ci

(0)rC
r
(12)l + Ci

(12)rC
r
(0)l,

Ei
(22)l = Ci

(12)rC
r
(11)l + Ci

(11)rC
r
(12)l + Ci

(21)rC
r
(0)l + Ci

(0)rC
r
(21)l,

Ei
(31)l = Ci

(21)rC
r
(11)l + Ci

(11)rC
r
(21)l, E

i
(23)l = Ci

(12)rC
r
(12)l + Ci

(22)rC
r
(0)l + Ci

(0)rC
r
(22)l,

Ei
(32)l = Ci

(21)rC
r
(12)l + Ci

(12)rC
r
(21)l + Ci

(3)rC
r
(0)l + Ci

(22)rC
r
(11)l + Ci

(11)rC
r
(22)l + Ci

(0)rC
r
(3)l,

Ei
(41)l = Ci

(3)rC
r
(11)l + Ci

(11)rC
r
(3)l + Ci

(21)rC
r
(21)l, E

i
(33)l = Ci

(22)rC
r
(12)l + Ci

(12)rC
r
(22)l,

Ei
(42)l = Ci

(4)rC
r
(0)l + Ci

(3)rC
r
(12)l + Ci

(22)rC
r
(21)l + Ci

(21)rC
r
(22)l + Ci

(12)rC
r
(3)l + Ci

(0)rC
r
(4)l,

Ei
(51)l = Ci

(3)rC
r
(21)l + Ci

(21)rC
r
(3)l + Ci

(4)rC
r
(11)l + Ci

(11)rC
r
(4)l, E

i
(43)l = Ci

(22)rC
r
(22)l,

Ei
(52)l = Ci

(4)rC
r
(12)l + Ci

(12)rC
r
(4)l + Ci

(3)rC
r
(22)l + Ci

(22)rC
r
(3)l,

Ei
(61)l = Ci

(3)rC
r
(3)l + Ci

(4)rC
r
(21)l + Ci

(21)rC
r
(4)l, E

i
(62)l = Ci

(4)rC
r
(22)l + Ci

(22)rC
r
(4)l,

Ei
(7)l = Ci

(4)rC
r
(3)l + Ci

(3)rC
r
(4)l, E

i
(8)l = Ci

(4)rC
r
(4)l.
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(5). The Calculation for ΦrΦr
i
l.

Differentiating (4.5) by yr, we get

4hm+3
00 W 2m+2

0 ΦrΦr
i
l = h2m+4

00 W0J
i
(11)l + h2m+4

00 J i(21)l+

h2m+3
00 Wm+2

0 J i(12)l + h2m+3
00 Wm+1

0 J i(22)l + h2m+3
00 W0J

i
(31)l+

h2m+3
00 W 2m+2

0 J i(23)l + h
3m+5

2
00 W 2m+1

0 J i(32)l+

hm+3
00 Wm+1

0 J i(41)l + h
3m+5

2
00 W 3m+2

0 J i(33)l + hm+2
00 W 2m+2

0 J i(42)l

+ hm+2
00 Wm+2

0 J i(51)l + hm+1
00 W 4m+2

0 J i(43)l + h
m+3

2
00 W 3m+2

0 J i(52)l+

h
m+3

2
00 W 2m+2

0 J i(61)l + h00W
3m+2
0 J i(71)l +W 4m+2

0 J i(8)l. (4.8)

(6). The main relation
Multiplying equation (4.3) by hm+2

00 W 2m+2
0 , we have the equality

22mKh2m+4
00 Wm+1

0 hil = 22m+2h2m+2
00 W 2m+2

0 +
hR0

i
0l2

2m+1h2m+1
00 Wm+1

0 .22mWm+1
0 Φi

‖l − 22mhm+1
00 W0.2

2mh2m
00 W

2m+1
0 Φi

l‖0+

22m+3h2m+2
00 W 2m+2

0 ΦrΦr
i
l,

where hil = δil− lill. Putting the values of Φi
‖l,Φ

i
l,Φ

i
l‖0,Φ

rΦr
i
l,Φ

r
lΦ

i
r in the above

equality, by straight forward computation, we finally obtain

h2m+2
00 γ1

i
(2m+3)l + hm+1

00 γ2
i
(2m+7)l +W 2m+2

0 γ3
i
(2m+7)l = 0, (4.9)

where γ1
i
(2m+3)l, γ2

i
(2m+7)l and γ3

i
(2m+7)l are homogeneous polynomials of degree

2m+3, 2m+7 and 2m+7 in yi respectively. Here, γ1
i
(2m+3)l = 0 is called the

curvature part, γ2
i
(2m+7)l = 0 is called the vanishing part and γ3

i
(2m+7)l = 0 the

killing part, respectively.
Proposition 4.2. The necessary and sufficient condition for a Kropina space (M,

F) with F = αm+1

βm =
(ek(x))

m−1
2 h

m+1
2

00

2mW0
m

to be of constant curvature K is that (4.9) holds good.
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